Original article    |    Open Access
Journal of Educational Studies in Science and Mathematics 2024, Vol. 3(2) 45-76

Who are the Mathematically Gifted? A Systematic Review of the Research on Cognitive Characteristics

Yasemin Sipahi & A. Kadir Bahar

pp. 45 - 76   |  DOI: https://doi.org/10.29329/jessm.2024.1110.1

Publish Date: December 31, 2024  |   Single/Total View: 47/41   |   Single/Total Download: 80/47


Abstract

This systematic review aimed to explore the cognitive characteristics of mathematically gifted individuals. Screening 497 studies, we obtained 22 empirical research that particularly explored cognitive characteristics of mathematically gifted individuals. We presented our findings under two major themes: domain-specific and domain-general abilities. Research that investigated domain-specific abilities suggested that problem-solving, mathematical creativity, and mathematical reasoning were essential characteristics of mathematical giftedness whereas some domain-general abilities including, perceptual abilities, visual-spatial ability, memory, and reasoning were found to contribute to mathematical giftedness. We also noted several within-group variations, suggesting a complex interaction of cognitive traits. Our results call for brand new frameworks on mathematical giftedness as the findings provide unique domain-specific characteristics that are different from what were provided by renowned models in the field. We also provided implications that encourage differentiated learning practices to meet the academic needs of mathematically gifted individuals.

Keywords: Mathematical Giftedness, Cognitive Characteristics, Visual-Spatial Ability, Reasoning, Systematic Review, Mathematical Talent


How to Cite this Article?

APA 7th edition
Sipahi, Y., & Bahar, A.K. (2024). Who are the Mathematically Gifted? A Systematic Review of the Research on Cognitive Characteristics. Journal of Educational Studies in Science and Mathematics, 3(2), 45-76. https://doi.org/10.29329/jessm.2024.1110.1

Harvard
Sipahi, Y. and Bahar, A. (2024). Who are the Mathematically Gifted? A Systematic Review of the Research on Cognitive Characteristics. Journal of Educational Studies in Science and Mathematics, 3(2), pp. 45-76.

Chicago 16th edition
Sipahi, Yasemin and A. Kadir Bahar (2024). "Who are the Mathematically Gifted? A Systematic Review of the Research on Cognitive Characteristics". Journal of Educational Studies in Science and Mathematics 3 (2):45-76. https://doi.org/10.29329/jessm.2024.1110.1

References
  1. Akdeniz, H., & Alpan, G. B. (2020). Özel yetenekli öğrencilerin yaratıcı problem çözme stillerinin analizi [Analysis of creative problem solving styles of gifted students.]. Talent, 10(1), 79-94. https://doi.org/10.46893/talent.758416 [Google Scholar] [Crossref] 
  2. Al-Hroub, A. (2020). Use of the Jordanian WISC-III for twice-exceptional identification. International Journal for Talent Development and Creativity, 8(1), 121-144. https://doi.org/10.7202/1076752ar [Google Scholar] [Crossref] 
  3. Al-Hroub, A. (2021). Utility of Psychometric and Dynamic Assessments for Identifying Cognitive Characteristics of Twice-Exceptional Students. Frontiers in Psychology, 12, 747872. https://doi.org/10.3389/fpsyg.2021.747872 [Google Scholar] [Crossref] 
  4. Archambault Jr, F. X., Westberg, K. L., Brown, S. B., Hallmark, B. W., Emmons, C., L., & Zang, W. (1993). Regular classroom practices with gifted students: Results of a national survey of classroom teachers. (Research monograph 93102). The University of Connecticut, National Research Center on the Gifted and Talented. [Google Scholar]
  5. Assmus, D., & Fritzlar, T. (2022). Mathematical creativity and mathematical giftedness in the primary school age range: an interview study on creating figural patterns. ZDM–Mathematics Education, 54(1), 113-131. https://doi.org/10.1007/s11858-022-01328-8 [Google Scholar] [Crossref] 
  6. Bahar, A. K., & Maker, C. J. (2020). Culturally Responsive Assessments of Mathematical Skills and Abilities: Development, Field Testing, and Implementation. Journal of Advanced Academics, 31(3), 211-233. https://doi.org/10.1177/1932202X20906130 [Google Scholar] [Crossref] 
  7. Bahar, A. K., Maker, C. J., & Scherbakova, A. (2021). The role of teachers’ implementation of the Real Engagement in Active Problem Solving (REAPS) model in developing creative problem solving in mathematics. Australasian Journal of Gifted Education, 30(2), 26–39. https://search.informit.org/doi/10.3316/informit.134990209201977 [Google Scholar]
  8. Bayazıt, İ., Koçyiğit, N. (2017). Üstün zekâlı ve normal zekâlı öğrencilerin rutin olmayan problemler konusundaki başarılarının karşılaştırmalı olarak incelenmesi [A comparative study of the success of gifted and non-gifted students on non-routine problems.]. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1172-1200. [Google Scholar]
  9. Benbow, C. P., Lubinski, D., Shea, D. L., & Eftekhari-Sanjani, H. (2000). Sex differences in mathematical reasoning ability at age 13: Their status 20 years later. Psychological science, 11(6), 474-480. https://doi.org/10.1111/1467-9280.00291 [Google Scholar] [Crossref] 
  10. Budak, I. (2012). Mathematical profiles and problem solving abilities of mathematically promising students. Educational Research and Reviews, 7(16), 344-350. https://doi.org/10.5897/ERR12.009 [Google Scholar] [Crossref] 
  11. Chang, L. L. (1985). Who are the mathematically gifted elementary school children?, Roeper Review, 8(2), 76-79. http://dx.doi.org/10.1080/02783198509552938 [Google Scholar]
  12. Çapan, B. E. (2010). Öğretmen adaylarının üstün yetenekli öğrencilere ilişkin metaforik algıları [Metaphorical perceptions of prospective teachers regarding gifted students]. The Journal of International Social Research, 3(12), 140-154. [Google Scholar]
  13. Galiullina, A. I., & Mefodeva, M. A. (2020). The phenomenon of mathematical giftedness as the issue of pedagogical psychology. Тенденции развития науки и образования, (59-4), 44-47. [Google Scholar]
  14. Galton, F. (1869). Hereditary genius. London: Macmillan. [Google Scholar]
  15. González, J. E., Gómez, J. L. L., & Alex, I. S. (2016). The posing of arithmetic problems by mathematically talented students. Electronic Journal of Research in Educational Psychology, 14(2),368–392. https://doi.org/10.14204/ejrep.39.15067 [Google Scholar] [Crossref] 
  16. Gorodetsky, M., & Klavir, R. (2003). What can we learn from how gifted/average pupils describe their processes of problem solving?. Learning and instruction, 13(3), 305-325. https://doi.org/10.1016/S0959-4752(02)00005-1 [Google Scholar] [Crossref] 
  17. Haataja, E., Laine, A., & Hannula, M. S. (2020). Educators’ perceptions of mathematically gifted students and a socially supportive learning environment–A case study of a Finnish upper secondary school. LUMAT: International Journal on Math, Science and Technology Education. https://doi.org/10.31129/LUMAT.8.1.1368 [Google Scholar] [Crossref] 
  18. Heinze, A. (2005). Differences in problem solving strategies of mathematically gifted and non-gifted elementary students. International Education Journal, 6(2), 175-183. [Google Scholar]
  19. Heller, K. A., & Schofield, N. J. (2000). International Trends and Topics of Research on. International handbook of giftedness and talent (2nd ed.) (123). Oxford: Elsevier Science. [Google Scholar]
  20. Hong, E., & Aqui, Y. (2004). Cognitive and motivational characteristics of adolescents gifted in mathematics: Comparisons among students with different types of giftedness. Gifted Child Quarterly, 48(3), 191-201. https://doi.org/10.1177/001698620404800304 [Google Scholar] [Crossref] 
  21. Jablonski, S., & Ludwig, M. (2019, February). Mathematical Arguments in the Context of Mathematical Giftedness–Analysis of Oral Argumentations with Toulmin. In Eleventh Congress of the European Society for Research in Mathematics Education (No. 18). Freudenthal Group; Freudenthal Institute; ERME. [Google Scholar]
  22. Johny, S. (2008). Some factors discriminating mathematically gifted and non-gifted students. Research in Mathematical Education, 12(4), 251-258. [Google Scholar]
  23. Koç Koca A., & Gürbüz, R. (2021). Problem solving strategies used by gifted secondary school students to solve math problems. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 21(1), 348-359. https://doi.org/10.17240/aibuefd.2021.21.60703-862916 [Google Scholar] [Crossref] 
  24. Kontoyianni, K., Kattou, M., Pitta-Pantazi, D., & Christou, C. (2013). Integrating mathematical abilities and creativity in the assessment of mathematical giftedness. Psychological Test and Assessment Modeling, 55(3), 289. [Google Scholar]
  25. Krieg, F. J. (1973). Perceptual skills and cognitive skills as predictors of academic achievement. (Publication No. 7403223) [Doctoral dissertation, The Ohio State University]. ProQuest Dissertations & Theses Global. [Google Scholar]
  26. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. University of Chicago Press. [Google Scholar]
  27. Kuo, C. C., Liang, K. C., Tseng, C. C., & Gau, S. S. F. (2014). Comparison of the cognitive profiles and social adjustment between mathematically and scientifically talented students and students with Asperger's syndrome. Research in Autism Spectrum Disorders, 8(7), 838-850. https://doi.org/10.1016/j.rasd.2014.04.004 [Google Scholar] [Crossref] 
  28. Leikin, R. (2010). Teaching the mathematically gifted. Gifted Education International, 27(2), 161-175. https://doi.org/10.1177/02614294100270020 [Google Scholar] [Crossref] 
  29. Leikin, M., Paz-Baruch, N., & Leikin, R. (2013). Memory abilities in generally gifted and excelling-in-mathematics adolescents. Intelligence, 41(5), 566-578. https://doi.org/10.1016/j.intell.2013.07.018 [Google Scholar] [Crossref] 
  30. Leikin, R., Paz-Baruch, N., & Leikin, M. (2014). Cognitive characteristics of students with superior performance in mathematics. Journal of Individual Differences, 35(3),119– 129. https://doi.org/10.1027/1614-0001/a000140 [Google Scholar] [Crossref] 
  31. Leikin, R., Koichu, B., Berman, A., & Dinur, S. (2017a). How are questions that students ask in high level mathematics classes linked to general giftedness?. ZDM, 49, 65-80. https://doi.org/10.1007/s11858-016-0815-7 [Google Scholar] [Crossref] 
  32. Leikin, R., Leikin, M., Paz-Baruch, N., Waisman, I., & Lev, M. (2017b). On the four types of characteristics of super mathematically gifted students. High Ability Studies, 28(1), 107-125. https://doi.org/10.1080/13598139.2017.1305330 [Google Scholar] [Crossref] 
  33. Leikin R. (2021). When practice needs more research: the nature and nurture of mathematical giftedness. ZDM: The International Journal on Mathematics Education, 53(7), 1579–1589. https://doi.org/10.1007/s11858-021-01276-9 [Google Scholar] [Crossref] 
  34. Lubinski, D., & Benbow, C. P. (2006). Study of Mathematically Precocious Youth after 35 Years: Uncovering Antecedents for the Development of Math-Science Expertise. Perspectives on Psychological Science, 1, 316-345. https://doi.org/10.1111/j.1745-6916.2006.00019.x [Google Scholar] [Crossref] 
  35. McCabe, K. O., Lubinski, D., & Benbow, C. P. (2020). Who shines most among the brightest?: A 25-year longitudinal study of elite STEM graduate students. Journal of Personality and Social Psychology, 119(2), 390–416. https://doi.org/10.1037/pspp0000239 [Google Scholar] [Crossref] 
  36. Maker, C. J. (2020). Culturally Responsive Assessments of Spatial Analytical Skills and Abilities: Development, Field Testing, and Implementation. Journal of Advanced Academics, 31(3), 234-253. https://doi.org/10.1177/1932202X20910697 [Google Scholar] [Crossref] 
  37. Maker, C. J., Zimmerman, R., Bahar, A. K., & In-Albon, C. (2021). The influence of real engagement in active problem solving on deep learning: An important component of exceptional talent in the 21st century context. Australasian Journal of Gifted Education, 30(2), 40–63. https://search.informit.org/doi/10.3316/informit.135008842173235 [Google Scholar]
  38. Marland, S. P. (1972). Education of the gifted and talented: Vol. 1. Report to Congress of the United States by the U.S. Commissioner of Education. U.S. Government Printing Office. [Google Scholar]
  39. Montague, M. (1991). Gifted and learning-disabled gifted students' knowledge and use of mathematical problem-solving strategies. Journal for the Education of the Gifted, 14(4), 393-411. https://doi.org/10.1177/016235329101400405 [Google Scholar] [Crossref] 
  40. Ozdemir, D., & Isiksal Bostan, M. (2021). A Design Based Study: Characteristics of Differentiated Tasks for Mathematically Gifted Students. European Journal of Science and Mathematics Education, 9(3), 125-144. https://doi.org/10.30935/scimath/10995 [Google Scholar] [Crossref] 
  41. Ozdemir, A., Sipahi, Y., & Bahar, A. K. (2024). The Past, Present, and Future of Research on Mathematical Giftedness: A Bibliometric Analysis. Gifted Child Quarterly ,68(3), 206-225. https://doi.org/10.1177/00169862241244717 [Google Scholar] [Crossref] 
  42. Pativisan, S. (2006). Mathematical problem solving processes of Thai gifted students. [Unpublished doctoral dissertation, Oregon State University]. ScholarsArchive@OSU. [Google Scholar]
  43. Paz-Baruch, N., Leikin, M., Aharon-Peretz, J., & Leikin, R. (2014). Speed of information processing in generally gifted and excelling-in-mathematics adolescents. High Ability Studies, 25(2), 143-167. https://doi.org/10.1080/13598139.2014.971102 [Google Scholar] [Crossref] 
  44. Paz-Baruch, N., Leikin, R., & Leikin, M. (2016). Visual processing in generally gifted and mathematically excelling adolescents. Journal for the Education of the Gifted, 39(3), 237-258. https://doi.org/10.1177/0162353216657184 [Google Scholar] [Crossref] 
  45. Pitta-Pantazi, D., Christou, C., Kontoyianni, K., & Kattou, M. (2011). A model of mathematical giftedness: Integrating natural, creative, and mathematical abilities. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 39-54. https://doi.org/10.1080/14926156.2011.548900 [Google Scholar] [Crossref] 
  46. Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press. [Google Scholar]
  47. Renzulli, J. S. (1978). What makes giftedness? Reexamining a definition. Phi delta kappan, 60(3), 1-10. [Google Scholar]
  48. Renzulli, J. S. (1998). The three-ring conception of giftedness. In S. M. Baum, S. M. Reis, & L. R. Maxfield (Eds.), Nurturing the Gifts and Talents of Primary Grade Students. Creative Learning Press. http://www.gifted.uconn.edu/sem/semart13.html [Google Scholar]
  49. Ruthsatz, J., Ruthsatz-Stephens, K., & Ruthsatz, K. (2014). The cognitive bases of exceptional abilities in child prodigies by domain: Similarities and differences. Intelligence, 44, 11-14. https://doi.org/10.1016/j.intell.2014.01.010 [Google Scholar] [Crossref] 
  50. Santos, E. M. M. D., Constantino, B., Rocha, M. M. D., & Mastroeni, M. F. (2020). Predictors of low perceptual-motor skills in children at 4-5 years of age. Revista Brasileira de Saúde Materno Infantil, 20, 759-767. https://doi.org/10.1590/1806-93042020000300006 [Google Scholar] [Crossref] 
  51. Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614. https://doi.org/10.1037/0022-0663.93.3.604 [Google Scholar] [Crossref] 
  52. Sheffield, L. J. (2006). Mathematically promising students from the space age to the information age. The Mathematics Enthusiast, 3(1), 101-109. https://doi.org/10.54870/1551-3440.1039 [Google Scholar] [Crossref] 
  53. Simut, C., & Godor, B. (2022). Investigating Potential Differences in the Approaches to Studying of Gifted and Normative Learners via PISA Math Tests Results. Croatian Journal of Education: Hrvatski časopis za odgoj i obrazovanje, 25(1), 101-138. https://doi.org/10.15516/cje.v25i1.4413 [Google Scholar] [Crossref] 
  54. Singer, F. M., Sheffield, L. J., & Leikin, R. (2017). Advancements in research on creativity and giftedness in mathematics education: introduction to the special issue. ZDM Mathematics Education, 49(1), 5-12. https://doi.org/10.1007/s11858-017-0836-x [Google Scholar] [Crossref] 
  55. Sipahi, Y. (2021). Problem-solving processes of mathematically gifted and non-gifted students. [Unpublished master thesis, Middle East Technical University]. OpenMetu. [Google Scholar]
  56. Sriraman, B. (2003). Mathematical giftedness, problem solving, and the ability to formulate generalizations: The problem-solving experiences of four gifted students. Journal of Secondary Gifted Education, 14(3), 151-165. https://doi.org/10.4219/jsge-2003-425 [Google Scholar] [Crossref] 
  57. Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics?. Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389 [Google Scholar] [Crossref] 
  58. Sowell, E. J., Zeigler, A. J., Bergwall, L., & Cartwright, R. M. (1990). Identification and description of mathematically gifted students: A review of empirical research. Gifted Child Quarterly, 34(4), 147-154. https://doi.org/10.1177/0016986290034004 [Google Scholar] [Crossref] 
  59. Spearman, C. (1904). The American Journal of Psychology. American Journal of Psychology, 15, 88. [Google Scholar]
  60. Stanley, J. C., Keating, D. P., & Fox, L. H. (1974). Mathematical talent: Discovery. description, and development. Johns Hopkins University Press. [Google Scholar]
  61. Stanley, J. C. (1977). Rationale of the Study of Mathematically Precocious Youth (SMPY) during its first five years of promoting educational acceleration. In J. C. Stanley, W. C. George, & C. H. Solano (Eds.), The gifted and the creative: A fifty-year perspective (pp. 75-112). Johns Hopkins University Press. [Google Scholar]
  62. Stanley, J. C. (1982). Identification of intellectual talent. In W. B. Schrader (Ed.), Measurement, guidance, and program improvement (pp. 97-109). Jossey-Bass. [Google Scholar]
  63. Stanley, J. C. (1996). In the beginning: The Study of Mathematically Precocious Youth. In C. P. Benbow & D. J. Lubinski (Eds.), Intellectual talent: Psychometric and social issues (pp. 225–235). Johns Hopkins University Press. [Google Scholar]
  64. Sternberg, R. J. (1999a). The theory of successful intelligence. Review of General psychology, 3(4), 292–316. [Google Scholar]
  65. Terman, L. M. (1954). The discovery and encouragement of exceptional talent. American Psychologist, 9(6), 221. [Google Scholar]
  66. Tjoe, H. (2015). Giftedness and aesthetics: Perspectives of expert mathematicians and mathematically gifted students. Gifted child quarterly, 59(3), 165-176. https://doi.org/10.1177/0016986215583872 [Google Scholar] [Crossref] 
  67. Trinter, C. P., Moon, T. R., & Brighton, C. M. (2015). Characteristics of students’ mathematical promise when engaging with problem-based learning units in primary classrooms. Journal of Advanced Academics, 26(1), 24-58. https://doi.org/10.1177/1932202X14562394 [Google Scholar] [Crossref] 
  68. Uclés, R. R., del Río Cabeza, A., & Martínez, P. F. (2018). Mathematical talent in Braille code pattern finding and invention. Roeper Review, 40(4), 255-267. https://doi.org/10.1080/02783193.2018.1501782 [Google Scholar] [Crossref] 
  69. Van Tassel-Baska, J. (2001). The talent development process: What we know and what we don't know. Gifted Education International, 16(1), 20- 28. https://doi.org/10.1177/026142940101600105 [Google Scholar] [Crossref] 
  70. Yazgan-Sağ, G. (2022). Views on Mathematical Giftedness and Characteristics of Mathematically Gifted Students: The Case of Prospective Primary Mathematics Teachers. Mathematics Teaching-Research Journal, 14(5), 125-137. [Google Scholar]
  71. Yildiz, D., & Durmaz, B. (2021). A gifted high school student’s generalization strategies of linear and nonlinear patterns via Gauss’s approach. Journal for the Education of the Gifted, 44(1), 56-80. https://doi.org/10.1177/01623532209782 [Google Scholar] [Crossref] 
  72. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127 [Google Scholar] [Crossref] 
  73. Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12, 669-696. https://doi.org/10.1007/s10763-014-9513-5 [Google Scholar] [Crossref] 
  74. Waisman, I., Leikin, M., & Leikin, R. (2016). Brain activity associated with logical inferences in geometry: focusing on students with different levels of ability. ZDM, 48, 321-335. https://doi.org/10.1007/s11858-016-0760-5 [Google Scholar] [Crossref] 
  75. Wolfle, J. A. (1986). Enriching the mathematics program for middle school gifted students. Roeper Review, 9(2), 81-85. https://doi.org/10.1080/02783198609553015 [Google Scholar] [Crossref] 
  76. Zhang, L., Gan, J. Q., & Wang, H. (2014). Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning. Frontiers in Human Neuroscience, 8, 430. https://doi.org/10.3389/fnhum.2014.00430 [Google Scholar] [Crossref] 
  77. Zhang, L., Gan, J. Q., Zhu, Y., Wang, J., & Wang, H. (2020). EEG source‐space synchrostate transitions and Markov modeling in the math‐gifted brain during a long‐chain reasoning task. Human brain mapping, 41(13), 3620-3636. https://doi.org/10.1002/hbm.25035 [Google Scholar] [Crossref]